Dirk Fransaer ereprofessor Ingenieurswetenschappen KU Leuven

Op 7 december 2017 is Dirk Fransaer, gedegeleerd bestuurder van VITO, aangesteld als ereprofessor aan de Faculteit Ingenieurswetenschappen op voordracht van het Departement Burgerlijke Bouwkunde.

Na zijn studies burgerlijk bouwkundig ingenieur aan de toenmalige Rijksuniversiteit Gent behaalde Dirk het diploma burgerlijk biomedisch ingenieur aan de KU Leuven.

Dirk heeft vervolgens gekozen voor een niet-academische carrière, die gekenmerkt is door innovatief denken vanuit een totaalvisie. Een  totaalvisie hangt nauw samen met het begrip ‘duurzame ontwikkeling’ dat Dirk na aan het hart ligt én het sleutelwoord vormt in de missie van VITO.

Als ereprofessor krijgt Dirk de bijzondere taak om ook die onderzoekers en studenten uit te dagen door met hen in discussie te treden. Dirk bracht in zijn inaugurale speech alvast 2 topics naar voren: een totaalconcept voor duurzame energie op basis van diepe geothermie en duurzame mobiliteit waarin alle vervoersmodi worden behandeld vanuit een moderne, technologische visie en een holistische benadering wat ook een mooi voorbeeld is van wat met al bestaande technologie en nog te ontwikkelen technologie (‘de hyperloop’) spoedig mogelijk zal zijn.

Voor meer informatie klik HIER

CO2PERATE

All Renewable CCU Based on Formic Acid Integrated in an Industrial Microgrid

The 2030 framework for climate and energy policies contains a binding target to cut greenhouse gas emissions in EU territory by at least 40% below 1990 levels by 2030, and has the ambition to further reduce them by 80-95% by 2050. As theoretical limits of efficiency are being reached and process-related emissions are unavoidable in some sectors, there is an urgent need to develop efficient carbon capture and utilisation systems. In the past, most research has focused on the capture and storage of carbon dioxide (CO2), also referred to as Carbon Capture and Storage (CCS). CCS is a technology directed to CO2 abatement and removes carbon from the economy. In addition to CCS, CO2 can also be transformed into valuable added products. This is known as carbon capture and utilization (CCU). Since the use of CO2 as a carbon feedstock has the potential to create attractive business cases for production of chemicals, more and more novel CCU technologies are being reported and the range of CO2-derived products is expanding. However, these emerging technologies all have different technology readiness levels (TRL) and a comparison for different technologies is missing.

The main objective of the project is the development of technologies for the conversion of CO2 to value-added chemicals using catalysis and renewable energy. To benchmark, compare and develop the various technologies, the formation of formic acid was selected as the initial target. Formic acid is the first product of the hydrogenation of CO2 towards value-added chemicals. In the project, the development of 4 catalytic routes (homogenous & heterogeneous catalysis, photochemical plasma-catalysis, electrochemical catalysis and bio-catalysis) is planned, enabling the sustainable synthesis of formic acid and more complex value-added chemicals (Single Cell Proteins, etc.). Sustainability is the common denominator of the different routes investigated in the project as they will enable the creation of a circular economy using (i) abundant reagents: CO2, H2O and electricity produced by surplus of renewable energies production through electrolysis and (ii) sustainable catalysts: earth-abundant metals will be used in homogeneous and heterogeneous catalysis, in photochemical and electro-catalytic syntheses, and set-ups will fully exploit renewable electricity. Finally, the potential of enzymatic catalysts (microbes and bacteria) will be exploited to use nitrogen from waste water sources to produce organic molecules of added value and microbial proteins for feed/food applications. At the end of the project, the partners want to be able to select the best technology  (CO2 source, purity and intended product, availability of excess electricity) for the conversion of CO2. A decision support framework will be developed to support this decision process. Via a techno-economic analysis, the different catalytic routes towards formic acid will be benchmarked against each other and against the classical process via base-catalyzed carbonylation of methanol.

The second objective is the valorization of formic acid. On the one hand, formic acid will be used as a building block for the bio-catalytic production of value-added chemicals such as Single Cell Proteins. On the other hand, formic acid is considered as a H2 carrier to propose a circular economy with CO2 and H2/electricity generated from renewable sources (POWER to CHEMICALS): when renewable sources (solar, wind, …) produce energy surplus, this energy can be converted in H2 (through electrolysis) that is chemically converted with CO2 into formic acid. When utilizing the H2 upon conversion of formic acid, CO2 is released and can be used recycled/reused with a new supply of H2 for the formation of formic acid generating a true circular approach.



Advisory Board
This project has the ambition to strengthen the position of Flanders in terms of research into CO2-based processes and materials. The relevance of this cluster SBO project is further emphasized by an industrial advisory board (pictured below), who are eager to implement the results and create economic valorisation. Current members of the advisory board include: 3M, Alco Biofuel, Arcelor Mittal, Avecom, Borealis, Cargill, Eastman, ENGIE Laborelec, Hydrogenics, INEOS, Messer, Monsanto, Nutrition Sciences and Smart Bioprocess.


Project Details
Project type: cSBO
Approved on: 14/12/2017
Duration: 01/03/2018 – 01/03/2022
Total budget: €2.612.101
Subsidy: €2.612.101
Project Partners

BioRECO2VER: turning CO2 into chemicals using bioconversion

Within the European Horizon 2020 project BioRECO2VER, an international consortium will take an important step in making bioconversion of CO2 commercially feasible. The 4 year project, coordinated by VITO, kicked off in January 2018 and will focus on refining biotechnological processes which can turn CO2 from industrial point sources into valuable platform chemicals like lactate and isobutene. The impact of the BioRECO2VER project is to provide an important next step in valorizing CO2, while at the same time offering alternative solutions for the production of chemicals.

The project goal is to create alternative processes for commercial-scale production of platform chemicals in a more sustainable way starting from industrial emissions of CO2. However, we still need to overcome some technical and economic barriers, from which biotechnological processes for CO2 conversion suffer. To name a few: gas pretreatment costs are still too high, gas transfer in the bioreactors is suboptimal, product recovery costs are still too elevated, and the scalability has not sufficiently been proven.

BioRECO2VER will resolve remaining barriers

In the new European Horizon 2020 project BioRECO2VER, a team of specialized industrial, academic and research partners will look into solving these challenges. BioRECO2VER wants to demonstrate the feasibility of more efficient biotechnological processes for the capture and conversion of CO2 from industrial point sources into the valuable platform chemicals isobutene and lactate.

To do so, the BioRECO2VER team will investigate among others a hybrid enzymatic process for CO2 capture from industrial point sources. The conversion of captured CO2 into the target products isobutene and lactate will be realized through 3 proprietary microbial platforms which are representative of a much wider range of products and applications. Bioprocess development and optimization will occur with both fermentative and bioelectrochemical systems. The microbial platforms will be advanced to Technology Readiness Level (TRL) 4 and the most promising process for each target product will be validated at TRL 5 on real off-gases.

International consortium combines industrial experience and academic expertise

The BioRECO2VER project was launched in January 1st and will run until the end of 2021 on a 7 mio EUR budget. The project will be coordinated by VITO (Flemish Institute for Technological Research). The other project partners are EnobraQ (France), Technical University of Luleå (Sweden), Syngip (Netherlands), IDENER (Optimización Orientada a la Sostenibilidad – Spain), CNR (Consiglio Nazionale delle Ricerche – Italy), Universitat de Girona (Spain), NOVA (Institut für politische und ökologische Innovation GmbH – Germany), Cementos Portland Valderrivas (Spain), Arkema (France), PKN ORLEN (Polski Koncern Naftowy ORLEN S.A. – Poland), and NatureWorks LLC (USA).

For more information click HERE

TESPA

Trigger-Degradable Eco-Substitutes for Polyamides

The current leading polyamide (PA) markets are historically grown from benzene, and therefore dominated by fossil-based plastic grades at matured low cost. The typical durability of PA results in full non-(bio)degradability. Greening these PA applications is not easy, unless new substitutes are developed that have stronger and more local bio-roots, and can be better controlled in their degradation pattern. The TESPA project aims to find such novel PA substitutes by developing new grades up to pilot scale, identifying their unique set of functionalities, and match them with target applications in the markets of fibers, yarns, filaments, engineering plastics, coatings and inks/adhesives.

Project Details
Project type: O&O
Approved on: 13/12/2017
Duration: 31/01/2018 – 31/01/2020
Total budget: €1.236.366
Subsidy: €642.631
Project Partners

Contact
Questions about this project? Please contact catalyst Stef Koelewijn (skoelewijn@catalisti.be).

Renewable Matter article “From Coal to Biomass – Dossier Belgium”

Driven by the Flemish Region, in Belgium the bioeconomy has great ambitions. It already boasts a few flagship achievements: for instance in the field of biofuel production, biotechnologies and research.
The full article, including interviews with Ludo Diels, Project Leader at VITO and Monika Sormann, Department of Economy, Science and Innovation (EWI) of the Flemish Government: http://www.renewablematter.eu/art/375/From_Coal_to_Biomass?lipi=urn%3Ali%3Apage%3Ad_flagship3_feed%3Bu%2Bg1QxlqQz%2BBOmkzeeTZ7g%3D%3D

Job opportunity at Ecover: Regulatory Manager R&D

Job Details

Description

We are people against dirty® (PAD), and we’ve always done things differently. We are fearless thinkers, mad scientists and adventurous designers who believe that making soap leads to brave ideas, bold inventions and beautiful bubbles.

We are small, but we have big plans to make the world a cleaner, greener, more colourful place. And we invite everyone to join us as we pioneer a future where doing business is doing good for all.

Function:  R&D                         

People leader:   R&D Manager

Role purpose:   As the EU regulatory expert you will be in charge of product and product labelling regulatory compliance.

The responsibilities:

  • You’ll be advising the formulators, the researchers and the product teams on do’s and don’ts, on product labelling, formula claims as well as on novel concepts
  • You’ll guard the legal framework for safe handling and formulation of ingredients
  • You’ll instruct the regulatory assistant on issuing safety data sheets and product registrations in the countries we operate in
  • You will ensure the compilation of cosmetic files
  • You’ll be seeking assistance from external consultants in our key sales hubs abroad as and when needed
  • You’ll relate to the entire business including our sales team and customer care on questions and issues as they arise
  • You’ll be monitoring legislation pertaining to all aspects of manufacturing and putting on the market of detergents and cosmetics and their ingredients. You’ll participate to detergent industry meetings for that purpose and will stay informed through newsletters and the like.
  • You’ll proactively advise the business and develop a regulatory strategy framework.

The candidate:

  • Will be motivated and have great initiative
  • A strong communicator
  • Should have an interest in great people leadership
  • Structured and able to work autonomously
  • A strategic thinking
  • A professional proficiency in English with another European language
  • Able to travel

The requirements:

  • A scientific education within Chemistry, Biology, Agronomy, Toxicology or Similar
  • Experience in chemical industry would definitely be a plus
  • Minimum 3 years of regulatory experience with REACH, BPR, CLP and SDS’es
  • Highly experienced with formulation safety assessment and claim support and experienced with safety data sheet software
  • A formal recognition as a cosmetic safety assessor and Detnet expert would be an advantage
  • Project management and coordination experience

For more information and to apply, click HERE

Flemish knowledge institutions join forces for research on Carbon Capture and Utilization: approval of CATCO2RE and CO2PERATE projects

Two research projects focusing on the discovery of new technologies to transform waste CO2 into value-added chemicals have been funded by the Flemish Government. The CATCO2RE project (2.5 million euro) is funded by the Research Foundation Flanders (FWO). The CO2PERATE project (2.6 million euro) is funded by the Agentschap Innoveren en Ondernemen (VLAIO), and supported by Catalisti, the spearhead cluster for chemistry and plastics. This support represents a significant milestone for the development of state-of-the-art expertise in CO2 capture and utilization in Flanders, and is expected to help address the impact of human activities on the environment. Both projects gather a multidisciplinary team of scientists from several Flemish institutions. CATCO2RE is a joint venture between UGent, KULeuven, VUB and VITO, while CO2PERATE is a collaboration between UGent, UAntwerp, KULeuven, VITO, and the Bio Base Europa Pilot Plant. Both projects are coordinated by Ghent University.

Turning waste into a resource

The discovery of efficient technologies that enable the use of CO2 as a starting material for chemical synthesis is one of the biggest scientific challenges of our time. It serves the dual purpose of reducing CO2 emissions and producing value added chemicals using CO2 as a building block, thus helping mitigate the effects of climate change while creating new opportunities for the chemical industry.

The specific target of CATCO2RE is to investigate the conversion of CO2 to methane and methanol using solar energy, integrating new developments in the production of solar hydrogen with catalyst design and state-of-the-art separation technologies, allowing for the integrated production of solar fuels. The integrated approach of CATCO2RE aims to significantly reduce operating and capital costs, making new CO2-to-methanol plants not only more economically competitive, but overall more sustainable. Meanwhile, CO2PERATE aims to develop catalytic technologies to convert CO2 into formic acid, using renewable electricity. Formic acid will subsequently be used as building block for the biosynthetic production of value added chemicals, as a building block for the chemical industry, or as a potential carrier for energy storage. The processes developed within CO2PERATE hence provide grid stability and integrate renewable electricity generation with the chemical industry.

With the launch of both research projects, the Flemish government provides a significant boost to establish a technology platform for catalytic CO2 reduction, focusing on all three potential routes for CO2 utilization: (i) CO2-neutral fuels and chemicals, (ii) CO2-based integration between renewable energy-production and chemical industry, and (iii) utilization of CO2 as a cost-effective C1 building block. To evaluate the potential of the different options, a decision support framework will be developed within CO2PERATE  to select the best available technology for CO2 utilization within a given techno-economic context. The potentially new business models originating from CO2 utilization within CATCO2RE and CO2PERATE are expected to contribute significantly to economic and sustainable growth in Flanders’ circular economy.

Contact

Elisabeth Delbeke
09 331 17 51
Elisabeth.Delbeke@UGent.be

Deceuninck investeert 10 miljoen euro in nieuwe fabriek in Diksmuide

Diksmuide – Deceuninck is gestart met de bouw van een nieuwe fabriek op zijn bedrijfssite aan de Heernisse in Diksmuide. Deze nieuwe fabriek zal instaan voor een performante recyclage van oude pvc-ramen en -deuren en die tot nieuwe pvc-grondstoffen verwerken.

Het bedrijf Deceuninck is volop bezig met de bouw van een nieuwe fabriek op zijn bedrijfsterreinen die palen aan het stedelijke afvalbakkenpark.“Met deze nieuwe fabriek willen we meehelpen om de ecologische voetafdruk te verkleinen. We doen dit via de recyclage van oud en niet meer gebruikt pvc. Al dit gerecycleerd pvc-materiaal is de grondstof voor een hele reeks nieuwe designproducten in de bouwsector”, zegt Tom Driessens, bedrijfsverantwoordelijke voor de Deceuninck in Diksmuide. “Deze nieuwe grondstof wordt gebruikt voor de productie van ramen en deuren, plafonds, vensterbanken, tuintoepassingen, profielen voor dak- en gevelbekleding, ventilatieroosters en zonnewering.”

“Deze nieuwe fabriek kost zo’n 10 miljoen euro en zal in de loop van de maand september operationeel zijn. Deze investering zal op termijn vijftien extra jobs creëren.”

Al in 2012 is het bedrijf gestart met de recyclage van oude pvc-ramen en -deuren. “De voorbije jaren hebben we daaruit veel geleerd. We hebben nu een procedé ontwikkeld om het gerecycleerde pvc in zo’n zuiver mogelijke vorm te bekomen. Dit gebeurt via een hoogtechnologisch machinepark, dat grotendeels computergestuurd wordt. Uit onze grondstof zijn de heel kleine brokjes zand, steen en glas verwijderd. Hierbij speelt ons bedrijf een voorbeeldfunctie. Het is de bedoeling om dit productieproces op termijn in onze fabrieken buiten België uit te rollen’”, vervolgt Tom Driessens.

Het bedrijf Deceuninck werd 81 jaar geleden opgericht en produceerde toen bakelieten knopen en gespen. De hoofdzetel bevindt zich in Gits, maar er zijn bedrijven in twaalf landen. De groep telt 3.700 medewerkers en 4.000 klanten die afkomstig zijn uit 90 landen.

“We realiseren een omzet van 670 miljoen euro. We behoren op wereldvlak tot de top drie van pvc-designproducenten. Onze nieuwe fabriek zal jaarlijks 40.000 ton nieuwe pvc-grondstof produceren afkomstig uit de recyclage. Er wordt 24 uur per dag gewerkt en dit vijf dagen per week. Naast de pvc-grondstof afkomstig uit recyclage maken wij ook nieuwe grondstoffen aan”, aldus nog Jerome De Bruycker, manager voor Deceuninck voor West-Europa.

Bron: http://www.nieuwsblad.be/cnt/dmf20180117_03305147

Tetra: kleefproblemen in een kunststof gietproces

Probleemstelling:

Binnen een thermoplastisch kunststof spuitgietproces kunnen er problemen optreden bij het uitwerpen van een product, die op hun beurt nefaste gevolgen hebben op zowel de productiviteit van het spuitgietproces als de kwaliteit van het product. Eén veelvoorkomend uitwerpprobleem wordt het “kleven” van producten in matrijzen genoemd. Bij dit fenomeen zijn de uitstootkrachten die nodig zijn om een product uit te stoten zeer hoog, waardoor het uitwerpsysteem schade kan aanbrengen aan het product (scheuren, zichtbare uitwerpers, vervorming, …). Deze plakverschijnselen zijn vaak te wijten aan de oppervlakteafwerking van de matrijs en worden tegenwoordig vaak verminderd door het gebruik van lossing sprays die in de open matrijzen gespoten worden vóór elke injectiecyclus. Deze sprays veroorzaken op hun beurt echter andere problemen, zoals een ongezonde (nevel) verontreiniging van de werkplek en een noodzakelijke reiniging van de gespuitgiete producten. Dit probleem geldt in het bijzonder voor voedseltoepassingen, medische apparaten en onderdelen die moeten gecoat worden (metallisatie, verven, …). Bovendien zorgt deze extra processtap voor een verhoging van de spuitgietcyclustijd en worden er aanzienlijke hoeveelheid chemicaliën verbruikt. Een andere oplossing is het aanbrengen van anti-kleef coatings op spuitgietmatrijzen die het plakverschijnsel tegen gaan. Deze bieden echter slechts een tijdelijke oplossing, doordat deze coatings meestal slijtgevoelig zijn.

Voor meer informatie klik hier: TETRA_Kleefproblemen in een kunststof spuitgietproces

Tuning of metal-organic frameworks enables new processes for CO2 capture and separation

A communication by the COMOC group on the discovery of a novel, large pore phase in bimetallic AL/V metal-organic frameworks (MOFs) was published on the cover of the Journal of Materials Chemistry A.

Metal-organic frameworks (MOFs) are highly crystalline porous architectures built up of inorganic metal nodes connected via organic building units. The enormous variability in both the organic and the inorganic moiety makes these hybrid structures highly tunable towards a large number of applications. For example, mixed-metal MOFs can be used as gas adsorbing and separating materials. The team of prof. Van Der Voort discovered how to tune MOFs to open and close their pores at a certain CO2 pressure. This opens the door to develop new processes for the separation of CO2 from other gasses (such as methane) or to temporarily enrich and capture large amounts of CO2. This work is highly relevant for the carbon capture and utilization (CCU) strategy aiming at the reduction of CO2 emissions.

Reference to the full paper: J. Mater. Chem. A, 2017, 5, 24580

Discovery of a novel, large pore phase in a bimetallic Al/V metal-organic framework

Hannes Depauw, Irena Nevjestic, Guangbo Wang, Karen Leus, Freddy Callens, Els De Canck, Klaartje De Buysser, Henk Vrielinck and Pascal Van Der Voort