Multiphase Processing with Microfluidics, Cavitation and Acoustic Streaming

MMICAS aims to investigate novel processing technologies (i.e., ultrasound energy and nozzle technology) for the continuous manufacturing of multiphase systems. A knowledge platform will be built, leading to a fundamental understanding of the technologies being studied and resulting in sufficient process knowledge to enable scale-up to industrial scale.

Project Details
Project type: ICON
Approved on: 10/12/2020
Duration: 01/01/2021 – 31/12/2023
Total budget: €2.684.458
Subsidy: €1.879.104
Project Partners


Real-Time Data-Assisted Process Development and Production in Chemical Applications

The DAP2CHEM project aims to stimulate the transition of chemical and pharmaceutical companies towards Industry 4.0, i.e. the integration of digital technologies and automation into production and logistics and the use of Industrial Internet of Things (IIoT), data analytics and digitized services in industrial processes. Within the project, three proof-of-concept test cases will prove the feasibility of new technologies and will capture best practices. As such, the approach developed within the DAP2CHEM project represents a first step which can be used as a blueprint for other related in-house applications and for other chemical and pharmaceutical companies in Flanders and Europe.

More information about this project will soon be provided on this page.

Project Details
Project type: ICON
Approved on: 17/09/2020
Duration: 01/10/2020 – 30/09/2022
Total budget: €3.234.372
Subsidy: €2.075.310
Project Partners


Atmospheric Plasma as Green Solution for Enhanced Adhesion and Functionalization

The PlasmaSol project will develop more innovative and sustainable adhesion and functionalization technologies for various materials through atmospheric plasma.

In the past, durable adhesion on a broad range of substrates has been achieved using conventional wet chemical surface treatments. These wet chemical surface treatments come with several ecological and health – related issues. It is well-known that solvent-based technologies are hazardous and highly flammable. However, also water-based processes, although being a safer alternative for solvent-based processes, come with ecological disadvantages. As such, a vast amount of waste water is generated, whereas the need for an additional drying step leads to a high energy consumption. Within the aim of reducing energy and (hazardous) chemical usage, atmospheric plasma technology is proposed as an eco-friendly alternative for surface activation and modification, while offering properties that are not always within the reach of conventional processes. Meanwhile, conventional process steps (i.e. cleaning steps, primer application) can be eliminated leading to reduced process time and energy- and chemical usage. This project focusses on plasma functionalization as a promising technology to improve adhesion, anti-bacterial and flame-retarding properties.

This project focusses on retrieving fundamental physical and chemical insights in plasma polymerisation and modification mechanisms as well as modelling of the plasma process. Considering its applicability in industrially relevant environments, the plasma reactor design will be optimized to obtain homogeneously deposited functionalized coatings. Furthermore, efforts will be taken to automize this new technology to make it industrially viable for a broad range of applications.

From Innovation to Business
With a broad range of industrial partners working together throughout the value chain and new fundamental insights and innovations in atmospheric plasma from the knowledge institutions, the PlasmaSol partners will maximize the potential to discover new industrial applications. This project is expected to finish in 2022. Project results will be announced on this page shortly afterwards.

Project Details
Project type: ICON
Approved on: 24/10/2019
Duration: 01/11/2019 – 31/10/2022
Total budget: €3.371.978
Subsidy: €2.325.748
Project Partners

Opleiden 4.0

Living Lab Industry 4.0: Opleiden 4.0

Industry 4.0 technologies and digitalisation provide interesting opportunities for educating and training individual employees. Despite such technological developments being rapid and numerous, companies in the chemical, plastics and process industries rarely implement them in new learning and training methods.

In the Opleiden 4.0 project, Catalisti – together with imec, Karel de Grote Hogeschool and ACTA – seeks to develop, test and validate innovative learning and training methods based on industry 4.0 technology. In the living lab, collective sessions and workshops will demonstrate a number of promising technique. In addition, the living lab seeks to support companies in working out concrete cases. Finally, the project aims to stimulate the transition of chemical companies towards industry 4.0 by creating success stories and best practices that can be shared with other companies.

Recently, Catalisti and its project partners presented its first research results and conceptual developments. Through in-depth interviews with VDAB and 16 employees from six different companies in the chemical and pharmaceutical sector, the project mapped the training needs of the sector. Following exhaustive research into modern learning and training methods, technologies such as virtual reality (VR) and augmented reality (AR) proved to be most promising.

A high-quality workforce is crucial to the Flemish chemical and plastics industry. This project seeks to ensure that employers have the right learning and training methods at their disposal to strengthen the competences and skills of their employees.

If your company is interested in this living lab, please visit the relevant VLAIO webpage or contact catalyst Jeroen van Walsem for more information.

Project Details
Project type: Living lab Industry 4.0
Approved on: 03/12/2018
Duration: 01/04/2019 – 31/03/2022
Total budget: €429.960
Subsidy: €343.968
Project Partners


Efficient Affinity Separations for Chemical Applications

The EASiCHEM project sets out to tackle the limitations of traditional affinity separation (AS) technology, by developing more efficient, and/or more sustainable AS processes. It is focusing on two promising, energy-poor liquid separation technologies: membrane-based AS processes and continuous chromatography.

More information about this project will soon be provided on this page.

Project Details
Project type: SBO
Approved on: 13/12/2018
Duration: 1/06/2019 – 31/05/2023
Total budget: €2.724.093
Subsidy: €2.724.093
Project Partners


Industry 4.0: Towards a Digitized Chemical and Plastics Sector in Flanders

In 2017, Catalisti initiated the DIGICHEM study to obtain an overview of the level of implementation of Industry 4.0 in the chemical and plastics sector in Flanders, the related challenges, and required collective actions that must be taken to increase the level of implementation to maintain competitiveness of the sector on a European and global level.

The DIGICHEM study was executed by Centexbel, sirris and Catalisti in a joint effort in the period February 2018 – January 2019. Within the study, Catalisti, Centexbel and sirris interviewed more than 40 individual companies, analyzed the relevant pre-existing studies and collected information from more than 70 different organizations through collective workshops.

The DIGICHEM study confirmed the importance and great potential impact on following overarching key features:
  • An increased operational excellence, productivity and flexibility within production, supported by a vertical integration within a smart and digitized factory;
  • A horizontal integration, leading to the development of new products and associated services from collaboration in a digitized supply chain.
Depending on their size, their position in the value chain or the products they produce, the route towards Industry 4.0 is different for every business. Adoption barriers are related to building a vision and strategy, digitization of all resources, the coupling with information systems, the organization structure and culture. Understanding the challenges and the barriers allows the development of a dedicated action plan for the Flemish chemical and plastics industry, focusing on the (collective) actions and trajectories that are needed to put more companies on the I4.0 road.

The actions in the action plan will be carried out in the coming years through collaboration of all triple helix partners in Flanders: government, research institutions and industry. The action plan exists of 4 major action lines: ‘Technology scouting and watch’, ‘Experimentation labs’, ‘Learning network’ and ‘Skills, education and legal framework’. The action plan describes both actions to be taken over the coming years and actions that are already ongoing in Flanders.

Catalisti will take the necessary steps and coordinate with all relevant stakeholders in Flanders to implement the various action lines of the plan through strong collaborations.

Download the DIGICHEM end report here.

Project Details
Project type: VIS Study
Approved on: 05/12/2017
Duration: 01/02/2018 – 31/01/2019
Total budget: €124.943
Subsidy: €99.955
Project Partners


Particles In Flow: Development of Continuous Crystallization, Dispersion and Emulsion Processes for Tuneable (Sub)micron Particle Generation

Organic nano- and microparticles are very important in all kinds of industries, products and applications. Three examples of particles with a high added value for Flemish companies are: organic micron sized crystals of active pharmaceutical ingredients, nano dispersions of coating resins and microcapsules with active ingredients. Four companies have combined forces with three academic groups, with a proven track record in this field, to tackle problems associated with the production of these particles. Currently, batch reactors are used to produce the particles, but limitations in heat and mass transfer result in little control over the average particle size and particle size distribution and batch to batch variations. Higher standards maintained by the companies and their customers necessitate the industrial researchers to explore new and more robust technologies of particle synthesis. Upon executing this project, a large step in the direction of implementation of continuous processing technology in the Flemish nano- and microparticle production industry is taken.

The main advantages of continuous processing for these particles are:
  • tuneable particles size and smaller particle size distribution
  • control over crystal polymorphism and shape
  • on demand production of low quantities
  • less use of raw materials due to less out of specification production
  • less use of mixing energy and solvent in cleaning steps
  • scalability of processes
The PIF project aims to develop advanced (semi)-continuous processes to accurately control the average particle size, the particle size distribution and (polymorphic) shape of nano- and microparticles. A complementary team of experts uses fundamental knowledge of the properties of the various solid-liquid systems to study influences of mixing devices, fluid dynamic and interactions between particles mutually and between particles and reactor components. This knowledge is used to design continuous reactors at lab and pilot scale.

Project Details
Project type: ICON
Approved on: 26/10/2017
Duration: 01/11/2017 – 30/04/2020
Total budget: €1.780.259
Subsidy: €1.432.057
Project Partners


Development of a Center of Expertise and Pilot Production Installation for Industrial Flow Processes in Flanders

ATOM 2 is a follow-up project that builds upon a previous Catalisti project, ATOM 1. In ATOM 1, a number of selected industrially relevant processes was studied for their applicability in flow in an attempt to make the challenging step from proof of concept at lab scale to trial runs at kilo scale. Key lessons learnt during this 2-year project include dealing with solid-liquid heterogeneous feed streams, viscosity change during the reaction and mass transfer limitations in liquid-liquid heterogeneous systems. Importantly, the encouraging results obtained were all on processes that are economically relevant.

The goal of ATOM 2 is to build upon the results accomplished in ATOM 1. In this follow-up project, an instream of relevant processes will be studied at lab scale and then scaled up to kilo scale. It is the intention to take an additional step in complexity of the processes studied. On the other hand, the project aims to get one step closer to industrialization, hence there will be a larger emphasis on the further scale up beyond the kilogram scale as well as on engineering aspects of a (pilot) production installation.

Project Details
Project type: ICON
Approved on: 26/10/2016
Duration: 31/10/2016 – 31/10/2020
Total budget: €3.181.789
Subsidy: €2.386.301
Project Partners


Supercritical Solutions for Sidestream Valorisation

Currently, a market trend towards the upgrading of sidestreams to high added value ingredients through development of innovative know-how is present. Indinox (a company that has achieved a strong position in the market with the prefabrication, construction, assembly and installation of pipelines) and Eco Treasures (a company active in the extraction of natural components) target to make available and promote to the market isolated, high value added components, that have been produced sustainably from organic/biological side streams. Indinox is part of the Gumiro holding, which is the main shareholder of Eco Treasures. Both companies have joined forces with some other companies (e.g., Cargill), that are also interested in the upgrading of sidestreams to high-value raw materials.

Project Details
Project type: ICON
Approved on: 18/06/2015
Duration: 01/09/2015 – 31/08/2018
Total budget: €1.437.368
Subsidy: €1.256.808
Project Partners


Development of a Center of Expertise and Pilot Production Installation for Industrial Flow Processes in Flanders

The fine-chemical processing industry in Flanders is to date still almost exclusively organized in terms of relatively large multi-purpose batch installations. Mainly under influence of the pharmaceutical industry in Europe and the US, a lot of research efforts have emerged in the field of continuous processing in the last decade. At first, this research was mainly focused towards small scale laboratory work, in the last couple of years more and more reports of pilot-scale and even full scale production developments in flow chemistry are being made. With the exception of some individual companies, the fine-chemical processing industry in Flanders is currently lagging behind in its adaptation of continuous processing.

With the ATOM project, the consortium wishes to make a start in building a true knowledge platform around flow chemistry in Flanders, and to investigate the feasibility of a flexible flow chemistry pilot production installation that would be open for contract manufacturing and pilot production for interested partners. By bringing together four industrial partners with a keen interest in this new technology and four academic groups with a proven track record in this field, we plan to make a serious step in the direction of anchoring the continuous processing knowledge needed to implement this technology in the Flemish chemical processing industry. Specifically, the main goals of this project can be summarized as follows:
  • Evaluate a number of specific processes from the partnering companies under flow conditions and prepare them for scale-up, if appropriate. The processes to be studied will cover a wide span of reaction conditions (multiphase, highly exothermic,…) so they can be considered to be generic for other applications from current and possibly future partners as well.
  • Gather the design input needed for the development of a multipurpose pilot plant flow reactor to produce pilot quantities of identified materials
  • Setting up a scientific, technological and economical centre of expertise for flow reactors, available for broad use by the Flemish chemical industry
Target Group
Companies exploring the possibilities of flow technology to increase their production efficiency. Assuring that the scientific and technological knowledge is available and accessible, together with an accessible pilot plant facility, it will be possible for both the industrial partners from this project and other interested parties from within the Flemish chemical community to make a well-motivated choice between batch processing and flow processing for different chemical processes.

Learn more about the technology

Project Details
Project type: ICON
Approved on: 18/06/2014
Duration: 31/08/2014 – 31/10/2016
Total budget: €1.695.572
Subsidy: €1.325.140
Project Partners