ValBran

The interregional ValBran project focussed on enhancing the value of wheat bran, an agricultural co-product derived from flour mills and biorefineries that is mainly used for animal feed. The project finished in December 2020. Scroll down to learn more, or read the end report.


Ambition

Starting from the carbohydrates of wheat bran, ValBran aimed to develop biotechnological and green chemistry pathways for the sustainable production of high added-value surfactant molecules, as a substitute for oil-based molecules. The plant-based molecules were required to respect four conditions: have a lower cost than the oil-based equivalent, have at least equivalent properties to those of the oil-based equivalent, do not compete with food, and have minimal environmental impact. Targeted applications were detergency, cosmetics, phytosanitary agents and food additives.

A second ambition consisted of strengthening the cross-border cooperation between the bio-economy sectors of northern France, Wallonia and Flanders. This aim was reflected in the broad project consortium, which included partners from all three regions.

Research

Specifically, the project focussed on two categories of surfactants: alkylpolyglycosides (APG) and sugar esters. Its approach consisted of developing several laboratory-scale processes and the selecting the most promising process for pilot-scale transfer. This was followed by an economic and environmental analysis of the developed process(es).

Results

The project lasted 4 years and finished in December 2020. It has shown that wheat bran has great potential for the sustainable production of surfactants. It proved possible to produce biological surfactants with interesting properties via enzymatic technologies. Yet, the production cost of the biological surfactants remains an issue, as it is higher than the cost for producing oil-based surfactants. Tests at pilot scale will have to be carried out to demonstrate the economic viability of the processes.

Learn more about the project results by reading the the end report.

Project Details

Project type: INTERREG
Duration: 31/12/2016 – 31/12/2020
Total budget: €1.745.826
Subsidy: €872.913
Website: www.valbran.eu

Project Partners

MMICAS

Multiphase Processing with Microfluidics, Cavitation and Acoustic Streaming

MMICAS aims to investigate novel processing technologies (i.e., ultrasound energy and nozzle technology) for the continuous manufacturing of multiphase systems. A knowledge platform will be built, leading to a fundamental understanding of the technologies being studied and resulting in sufficient process knowledge to enable scale-up to industrial scale.

Project Details
Project type: ICON
Approved on: 10/12/2020
Duration: 01/01/2021 – 31/12/2023
Total budget: €2.684.458
Subsidy: €1.879.104
Project Partners

DAP²CHEM

Real-time data-assisted process development and production in chemical applications

The DAP2CHEM project aims to stimulate the transition of chemical and life science companies towards I4.0. The project will generate generic knowledge for real-time data usage by these companies through AI systems for improved process development, optimisation and manufacturing excellence.

Challenges and hurdles
Industry 4.0 (I4.0), Artificial Intelligence (AI) and digitalisation are revolutionising industries across the globe. As underlined by Catalisti’s 2019 DIGICHEM study, chemical, pharmaceutical, and plastics-producing and -processing companies are interested in implementing Big Data Analysis and AI in their production processes in order to generate business value. Yet, implementation of these technologies within the sector remains rather limited due to a range of sector-specific challenges and hurdles.

DAP2CHEM
To overcome some of these hurdles, DAP2CHEM aims to stimulate the transition of chemical and life science companies towards I4.0. The project will generate the necessary generic knowledge for real-time data usage by these companies through AI systems for improved process development, optimisation, and manufacturing excellence in the chemical and life science industry. It will also expand the knowledge base at Flemish research institutes concerning (hyperspectral) image processing and analysis, advanced analytics and hybrid AI, thereby bridging the gap between academic fundamental knowledge and applicability in an industrial context (explainability and integratability).

Achieving these project goals requires expertise in both Operational Technologies (OT) and Information Technologies (IT) for the process and discrete manufacturing industry. Cronos, an early actor in the I4.0 space, will provide this expertise.

Three test cases
In turn, the fundamental knowledge acquired by the knowledge institutes will be verified in three proof-of-concept test cases at Procter and Gamble (P&G), Ajinomoto Bio-Pharma Services and Janssen. These test cases will:
  • Gain fundamental insights in advanced vision for inline anomaly detection of randomly shaped and randomly oriented objects at high-speed processes with reduced labelling efforts. The objects selected for DAP2CHEM are P&G’s washing pods.
  • Gain fundamental insights, develop, and apply thermodynamic/AI hybrid models for advanced process control and translate this in active control strategies in a development and manufacturing phase. In the case of Ajinomoto Bio-Pharma Services, this is a Raman-based control of a two-step continuous flow system. In the case of Janssen this is a constant-level solvent switch in batch equipment.
Looking ahead
The DAP2CHEM test cases will prove the feasibility of new technologies and will capture best practices. They can be used as a blueprint for other related in-house applications by the participating companies, or as an example for other chemical and pharmaceutical companies in Flanders and beyond.

Project Details
Project type: ICON
Approved on: 17/09/2020
Duration: 01/10/2020 – 30/09/2022
Total budget: €3.234.372
Subsidy: €2.075.310
Project Partners

Ongelimiteerde Recyclage

The EFRO project Ongelimiteerde Recyclage, or Unlimited Recycling, seeks to further promote the circular economy by exploring the possibilities of unlimited recycling, gauging the applicability limits of recycled materials, and stimulating the use of those recycled materials. In this respect, overcoming prejudices about the use of recyclates in end products will be an important component of the project.

Through Circular Inspiration Days, the project will engage companies to brainstorm around eight recycling themes that are of specific interest to the textile and plastics sector. Co-creation sessions with companies and knowledge institutions will actively aim to seek concrete solutions for sectoral issues. Through these sessions, are aimed at. Finally, this collaborative approach is intended to lead to new economically-relevant products.

On 19 October 2021, during the Circular Inspiration Day III, the project’s end results and inspiring stories will be shared with interested companies! More info about this event.

More info about this EFRO project: https://tuawest.be/home/projecten/ongelimiteerde-recyclage/.

Project Details
Project type: EFRO
Duration: 01/05/2019 – 30/04/2021
Total budget: €968.700
Subsidy: €387.480
Project Partners

CSP+

Enhanced PV integrated Concentrator Solar Power system

The CSP+ project, an intercluster collaboration with Flux50, aims to combine 2 solar technologies to produce heat (CSP) and electricity (PV) using the same surface area to capture even more energy from the sun. Its ambition to develop more efficient solar technology is especially relevant to Flanders, a region with a significant diffuse component in the sunlight and limited availability of free surface area.

Research within the project will specifically focus on the design of solar cells, development of new transmission coatings and innovative integration technology to maximize the energy yield and thus minimize the Levelized Cost Of Energy of CSP systems. This will make the use of CSP systems more economically viable in regions with a lot of diffuse light, like Flanders. At the end of the project, the consortium wants to arrive at a proof of concept on Thor Park that will be monitored for six months.

More information about this project will soon be provided on this page.

Project Details
Project type: ICON
Approved on: 09/07/2020
Duration: 01/09/2020 – 31/08/2022
Total budget: €1.656.408
Subsidy: €1.219.506
Project Partners

Contact
Questions about this project? Please contact catalyst Luc Van Ginneken (lvanginneken@catalisti.be).

Remove2Reclaim

Recycling of Plastics and Titanium Dioxide via Advanced Dissolution and Separation Techniques for Plastic Additive Removal

The Remove2Reclaim project aims to develop innovative solvent-based extraction routes to remove additives, such as titanium dioxide, from different polymer matrices and to reuse both titanium dioxide and polymer in new products. This dissolution route will be a nice add-on to existing mechanical and chemical polymer recycling schemes.

More information about this project will soon be provided on this page.

Press Releases
Press release by project partner INEOS Styrolution – 21 October 2020

Project Details
Project type: ICON
Approved on: 09/07/2020
Duration: 01/09/2020 – 31/08/2023
Total budget: €3.107.817
Subsidy: €1.898.644
Project Partners

Tune2Bio

Tuning the Biodegradability of (Bio)Polymers for more Sustainable Plastic Applications

The Tune2Bio project seeks to develop the knowledge and expertise needed to tune the biodegradability of (bio)polyesters through innovative physical and chemical modification of polymers. The developed structure-processing-biodegradation relations will enable us to dial in the desired biodegradation profile over a large timeframe. Acquired knowledge and expertise will be used in combination with research into the challenging new production techniques that these newly modified polyesters require, resulting in a proof of concept for various industry-relevant products (i.e. filaments, fibres, and films).

More information about this project will soon be provided on this page.

Project Details
Project type: ICON
Approved on: 19/03/2020
Duration: 01/03/2020 – 28/02/2023
Total budget: €2.532.943
Subsidy: €1.745.339
Project Partners

Contact
Questions about this project? Please contact catalyst Martijn Mertens (mmertens@catalisti.be).

PoCoPAdd

Post-Consumer PVC Boosted with Additives

PVC is a common plastic material, found in household applications like window profiles and luxury vinyl tiles. Today, the quality of recycled post-consumer PVC waste lags behind virgin PVC, limiting its potential. The sustainable solution? Adding high-performing additives during the recycling process to boost post-consumer PVC to the level of virgin PVC.

PoCoPAdd aims to gain a deeper understanding of the effect recycling has on post-consumer PVC by investigating the recyclate characteristics, processability and end product properties. With this knowledge, new high-performing additives will be designed to boost post-consumer PVC up to the level of virgin PVC and in turn increase the amount of post-consumer PVC recyclate in current and potential new high-quality products.

Press Releases
Press release by project partner Oleon – 26 October 2020

Project Details
Project type: ICON
Approved on: 19/03/2020
Duration: 1/06/2020 – 30/05/2023
Total budget: €3.105.401
Subsidy: €2.099.639
Project Partners

Contact
Questions about this project? Please contact catalyst Luc Van Ginneken (lvanginneken@catalisti.be).

ACCTS

Carbon Capture, Transport and Storage in the Chemical Cluster of the Port of Antwerp

ACCTS is a collaborative study in which the technical and financial feasibility of CO2 capture at six different chemical sites in the Port of Antwerp is investigated, as well as different scenarios for the local transport of the captured CO2. The results of the study will contribute to the general goal of the Antwerp@C consortium to start the development of infrastructure for carbon capture, utilisation and storage in the chemical cluster of the Port of Antwerp.

More information about this project will soon be provided on this page.

Project Details
Project type: Feasibility Study
Duration: 1/12/2019 – 30/11/2020
Total budget: €499.004
Subsidy: €249.503
Project Partners

PlasmaSol

Atmospheric Plasma as Green Solution for Enhanced Adhesion and Functionalization

Ambition
The PlasmaSol project will develop more innovative and sustainable adhesion and functionalization technologies for various materials through atmospheric plasma.

In the past, durable adhesion on a broad range of substrates has been achieved using conventional wet chemical surface treatments. These wet chemical surface treatments come with several ecological and health – related issues. It is well-known that solvent-based technologies are hazardous and highly flammable. However, also water-based processes, although being a safer alternative for solvent-based processes, come with ecological disadvantages. As such, a vast amount of waste water is generated, whereas the need for an additional drying step leads to a high energy consumption. Within the aim of reducing energy and (hazardous) chemical usage, atmospheric plasma technology is proposed as an eco-friendly alternative for surface activation and modification, while offering properties that are not always within the reach of conventional processes. Meanwhile, conventional process steps (i.e. cleaning steps, primer application) can be eliminated leading to reduced process time and energy- and chemical usage. This project focusses on plasma functionalization as a promising technology to improve adhesion, anti-bacterial and flame-retarding properties.

Action
This project focusses on retrieving fundamental physical and chemical insights in plasma polymerisation and modification mechanisms as well as modelling of the plasma process. Considering its applicability in industrially relevant environments, the plasma reactor design will be optimized to obtain homogeneously deposited functionalized coatings. Furthermore, efforts will be taken to automize this new technology to make it industrially viable for a broad range of applications.

From Innovation to Business
With a broad range of industrial partners working together throughout the value chain and new fundamental insights and innovations in atmospheric plasma from the knowledge institutions, the PlasmaSol partners will maximize the potential to discover new industrial applications. This project is expected to finish in 2022. Project results will be announced on this page shortly afterwards.

Project Details
Project type: ICON
Approved on: 24/10/2019
Duration: 01/11/2019 – 31/10/2022
Total budget: €3.371.978
Subsidy: €2.325.748
Project Partners