Jaarevent_uitnodiging_2018_dinner

Janssen Pharmaceutica and InOpSys Golden Award winner at Belgian Business Awards for the Environment.

The Belgian Business Awards for the Environment reward small and big companies for their effort and commitment to sustainable development. These awards, which are handed out every two years, put companies in the spotlight who have managed to combine economic activities and care for the environment thanks to green innovations.

This year, the Golden Award went to the Plant-On-A-Truck project (recovery and re-use of raw materials) of InOpSys and Janssen Pharmaceutica on the one hand, and to the Circular Economy Project of Janssen Pharmaceutica and De Neef Chemical Processing on the other hand.

Why did they win? Find out the full story in this short movie and in this article of VBO.

The award ceremony took place yesterday March 12 at 4 p.m. at VBO in Brussels. None other than Kris Peeters (Vice-Prime Minister and Minister of Labour, Economic Affairs and Consumers) and Marie-Christine Marghem (Minister of Energy, Environment and Sustainable Development) handed out the awards to the, by an independent jury selected, winners.


Marie-Christine Marghem: “Who chooses a sustainable company today, is taking care of the future. The future of our children and of our companies. Tomorrow you will make the real difference.”


Kris Peeters: “The implementation of sustainable economy is a long-term operation. It takes a lot of conviction, ambition, perseverance, and good examples who deserve to be followed.”

Jaarevent_uitnodiging_2018_dinner

RECYCOAT project will research technologies for the separation of layers in complex, coated or laminated (multilayer) materials

With view on circular economy, recycling of products after use is key. Currently merely 30% of our plastic and textile waste is being recycled. The vast majority of recyclable products are actually one component materials, circumventing the necessity of a separation step.

Coated and laminated materials are difficult to recycle because of their hybrid nature: the coating layer is difficult to separate from the bulk material or the coating layer can be cured to prevent melting or dissolution in conventional solvents.

The current routes for end-of-life of “complex”-composite products are mainly focusing on burning or converting into RDF pellets (Refuse Driven Fuel). The energy content and presence of a fusible fraction (carrier and possibly also coating) explain why this waste disposal method is widely spread. Another commonly used route is mechanical reduction via shredders and subsequent use as filler material.

The project RECYCOAT aims to investigate various technologies to separate the different layers present in complex coated or laminated (multilayer) materials (in particular textiles and plastics). The focus is on developing a good design (eco-design) of the multi-layered products and/or altering the chemistry of the coating or adhesive layer. The material should be developed in such a way that maximum separation (i.e. recycling) is made possible: the different layers present in the complex material must be completely separable from each other.

An example of such a technology is an adapted adhesive layer of a carpet allowing separation in boiling water. After 30 seconds the secondary backing is split off.

 

This collective project, funded by Catalisti, started beginning of March and will run for two years. Companies are still welcome to join the user committee of the project. For more information, please contact us.

Ine De Vilder (textile) – ivi@centexbel.be

Isabel De Schrijver (plastic) – ids@centexbel.be

Jaarevent_uitnodiging_2018_dinner

Plastics Recycling Awards Europe Announces Finalists

Crain and Plastics Recyclers Europe are pleased to announce the finalists for the inaugural Plastics Recycling Awards Europe!

The shortlist for the first Plastics Recycling Awards Europe has been published. The winners will be announced on the second day of The Plastics Recycling Show Europe taking place at the RAI Amsterdam in The Netherlands 24-25 April 2018.

The five different award categories are Recycled Plastic Consumer Lifestyle Product of the Year, Best Building & Construction Product, Best Recycled Plastic Packaging Product, Best Technology Innovation in Plastics Recycling and Plastics Recycling Ambassador of the Year.

“The standard of entries we have received for the inaugural Plastics Recycling Awards Europe has been outstandingly high,” said Ton Emans, Plastics Recyclers Europe (PRE). “The finalists demonstrate the vast array of consumer and industrial applications in which recycled plastics and recycling technology are being used. They make a huge contribution towards conserving resources, reducing CO2 and sustaining the circular economy.”

For more information and to view the finalists click here: http://prseventeurope.com/prse2018/en/page/finalists

Jaarevent_uitnodiging_2018_dinner

Imec Technology Forum 2018 (23-24 May 2018) discount for Catalisti members!

 

Het Imec Technology Forum Belgium (23-24 mei, 2018 in Antwerpen)

is dé internationale conferentie over nano- en digitale technologie.

Het thema dit jaar: New perspectives make the impossible possible

Ervaar hoe de combinatie van nanotech en digitale technologie het onmogelijke mogelijk maakt.

Bekijk de dingen vanuit een nieuw perspectief.

  • 60 presentaties van topexperten uit de industrie en imec
  • 8 ‘detailed perspectives’ rond specifieke technologiedomeinen
  • 55 live demos over nieuwe technologieën en toepassingen
  • Netwerking met 1.800 nationale en internationale leiders uit de ICT-wereld

Benieuwd naar wat de toekomst voor jou in petto heeft? Bekijk het volledige programma en registreer nu op www.itf2018.com/belgium

Catalisti leden genieten van 20% korting op de registratiekosten. Contacteer info@catalisti.be voor uw kortingscode.

 

Jaarevent_uitnodiging_2018_dinner

Job opportunity @Tectero: R&D Assistant

Functieomschrijving

  • Je hebt een uitgesproken innovatieve rol, waarbij je bestaande producten en processen verbetert en nieuwe producten ontwikkelt die klanten gebruiken in zeer verscheiden industriële processen.
  • Je wordt ingeschakeld in zowel de ontwikkeling als de productie van nieuwe oleochemische producten.
  • Je informeert jezelf op de markt of via literatuur omtrent nieuwe trends en ontwikkelingen en zet die in de praktijk om.
  • Je zoekt nieuwe grondstoffen en onderhoudt technisch contact met leveranciers.
  • Je rapporteert aan rechtstreeks en maakt deel uit van het ontwikkelingsteam van Tectero.

Profiel

  • Je hebt een opleiding op bachelor of masterniveau, met een stevige scheikundige basis.
  • Een eerste ervaring in een labo of pilootinstallatie is een must.
  • Kennis van oleochemie is een plus.

Jobgerelateerde competenties

  • Testen uitvoeren De resultaten analyseren Het product en proces op punt stellen
  • Wetenschappelijke, technologische, technische, reglementaire, … informatie opvolgen en actualiseren
  • Domein: Industrialisatie
  • Oplossingen en technische en technologische evoluties ontwikkelen De kenmerken en eisen van het project bestuderen
  • Verschillende diensten en klanten technisch bijstaan
  • Domein: Studies, engineering
  • Technische dossiers voor de beschrijving van het project opstellen en aanpassen
  • Leveranciers of dienstverleners selecteren Onderhandelen over contractvoorwaarden De geleverde diensten of producten controleren
  • De methodes en middelen voor studies en ontwerp en hun uitvoering bepalen
  • De uitvoerbaarheid van het project bestuderen Technische en technologische voorstellen uitwerken

Persoonsgebonden competenties

  • Resultaatgerichtheid
  • Contactvaardig zijn
  • Zelfstandig werken
  • Commercieel zijn
  • Plannen (= ordenen)
  • Creatief denken (Inventiviteit)

Vereiste studies

  • Master Industriële wetenschappen: Chemie
  • Prof. bach. Chemie of gelijkwaardig door ervaring.

Talenkennis

  • Frans (goed)
  • Engels (goed)
  • Nederlands (zeer goed)

Werkervaring

Minstens 5 jaar ervaring

Rijbewijs

B

Contract

  • Vaste Job
  • Contract van onbepaalde duur
  • Voltijds

Aanbod

De mogelijkheid om te werken bij een groeibedrijf in zijn sector en er vorm te geven aan deze permanente groei door innovatie.

Een werkomgeving waarin je je creativiteit en ondernemingszin ten volle kan gebruiken en aanscherpen in projecten die je zelfstandig kan uitwerken.

De mogelijkheid om een loopbaan op te bouwen in functie van je eigen ambitie en motivatie.

Een degelijke remuneratie die meegroeit met de evolutie van het bedrijf.

Plaats tewerkstelling

TECTERO

Aannemersstraat 136

9040 SINT-AMANDSBERG

Toon op kaart

Jaarevent_uitnodiging_2018_dinner

Dirk Fransaer ereprofessor Ingenieurswetenschappen KU Leuven

Op 7 december 2017 is Dirk Fransaer, gedegeleerd bestuurder van VITO, aangesteld als ereprofessor aan de Faculteit Ingenieurswetenschappen op voordracht van het Departement Burgerlijke Bouwkunde.

Na zijn studies burgerlijk bouwkundig ingenieur aan de toenmalige Rijksuniversiteit Gent behaalde Dirk het diploma burgerlijk biomedisch ingenieur aan de KU Leuven.

Dirk heeft vervolgens gekozen voor een niet-academische carrière, die gekenmerkt is door innovatief denken vanuit een totaalvisie. Een  totaalvisie hangt nauw samen met het begrip ‘duurzame ontwikkeling’ dat Dirk na aan het hart ligt én het sleutelwoord vormt in de missie van VITO.

Als ereprofessor krijgt Dirk de bijzondere taak om ook die onderzoekers en studenten uit te dagen door met hen in discussie te treden. Dirk bracht in zijn inaugurale speech alvast 2 topics naar voren: een totaalconcept voor duurzame energie op basis van diepe geothermie en duurzame mobiliteit waarin alle vervoersmodi worden behandeld vanuit een moderne, technologische visie en een holistische benadering wat ook een mooi voorbeeld is van wat met al bestaande technologie en nog te ontwikkelen technologie (‘de hyperloop’) spoedig mogelijk zal zijn.

Voor meer informatie klik HIER

Jaarevent_uitnodiging_2018_dinner

CO2PERATEExecution 

All renewable CCU based on formic acid integrated in an industrial microgrid

The 2030 framework for climate and energy policies contains a binding target to cut greenhouse gas emissions in EU territory by at least 40% below 1990 levels by 2030, and has the ambition to further reduce them by 80-95% by 2050. As theoretical limits of efficiency are being reached and process-related emissions are unavoidable in some sectors, there is an urgent need to develop efficient carbon capture and utilisation systems. In the past, most research has focused on the capture and storage of carbon dioxide (CO2), also referred to as Carbon Capture and Storage (CCS). CCS is a technology directed to CO2 abatement and removes carbon from the economy. In addition to CCS, CO2 can also be transformed into valuable added products. This is known as carbon capture and utilization (CCU). Since the use of CO2 as a carbon feedstock has the potential to create attractive business cases for production of chemicals, more and more novel CCU technologies are being reported and the range of CO2-derived products is expanding. However, these emerging technologies all have different technology readiness levels (TRL) and a comparison for different technologies is missing.

The main objective of the project is the development of technologies for the conversion of CO2 to value-added chemicals using catalysis and renewable energy. To benchmark, compare and develop the various technologies, the formation of formic acid was selected as the initial target. Formic acid is the first product of the hydrogenation of CO2 towards value-added chemicals. In the project, the development of 4 catalytic routes (homogenous & heterogeneous catalysis, photochemical plasma-catalysis, electrochemical catalysis and bio-catalysis) is planned, enabling the sustainable synthesis of formic acid and more complex value-added chemicals (Single Cell Proteins, etc.). Sustainability is the common denominator of the different routes investigated in the project as they will enable the creation of a circular economy using (i) abundant reagents: CO2, H2O and electricity produced by surplus of renewable energies production through electrolysis and (ii) sustainable catalysts: earth-abundant metals will be used in homogeneous and heterogeneous catalysis, in photochemical and electro-catalytic syntheses, and set-ups will fully exploit renewable electricity. Finally, the potential of enzymatic catalysts (microbes and bacteria) will be exploited to use nitrogen from waste water sources to produce organic molecules of added value and microbial proteins for feed/food applications. At the end of the project, the partners want to be able to select the best technology  (CO2 source, purity and intended product, availability of excess electricity) for the conversion of CO2. A decision support framework will be developed to support this decision process. Via a techno-economic analysis, the different catalytic routes towards formic acid will be benchmarked against each other and against the classical process via base-catalyzed carbonylation of methanol.

The second objective is the valorization of formic acid. On the one hand, formic acid will be used as a building block for the bio-catalytic production of value-added chemicals such as Single Cell Proteins. On the other hand, formic acid is considered as a H2 carrier to propose a circular economy with CO2 and H2/electricity generated from renewable sources (POWER to CHEMICALS): when renewable sources (solar, wind, …) produce energy surplus, this energy can be converted in H2 (through electrolysis) that is chemically converted with CO2 into formic acid. When utilizing the H2 upon conversion of formic acid, CO2 is released and can be used recycled/reused with a new supply of H2 for the formation of formic acid generating a true circular approach.

This project has the ambition to strengthen the position of Flanders in terms of research into CO2-based processes and materials. The relevance of this cluster SBO project is further emphasized by an industrial advisory board, who are eager to implement the results and create economic valorisation. Current members of the advisory board include: 3M, Alco Biofuel, Arcelor Mittal, Avecom, Borealis, Cargill, Eastman, ENGIE Laborelec, Hydrogenics, INEOS, Messer, Monsanto, Nutrition Sciences and Smart Bioprocess.

Project type: cSBO
Approved on: 14/12/2017
Duration: 01/03/2018 – 01/03/2022
Total project budget: EUR 2.612.101
Subsidy: EUR 2.612.101
Partners:  VITO logo blends
 

Advisory Board:

 

                             

 

Jaarevent_uitnodiging_2018_dinner

BioRECO2VER: turning CO2 into chemicals using bioconversion

Within the European Horizon 2020 project BioRECO2VER, an international consortium will take an important step in making bioconversion of CO2 commercially feasible. The 4 year project, coordinated by VITO, kicked off in January 2018 and will focus on refining biotechnological processes which can turn CO2 from industrial point sources into valuable platform chemicals like lactate and isobutene. The impact of the BioRECO2VER project is to provide an important next step in valorizing CO2, while at the same time offering alternative solutions for the production of chemicals.

The project goal is to create alternative processes for commercial-scale production of platform chemicals in a more sustainable way starting from industrial emissions of CO2. However, we still need to overcome some technical and economic barriers, from which biotechnological processes for CO2 conversion suffer. To name a few: gas pretreatment costs are still too high, gas transfer in the bioreactors is suboptimal, product recovery costs are still too elevated, and the scalability has not sufficiently been proven.

BioRECO2VER will resolve remaining barriers

In the new European Horizon 2020 project BioRECO2VER, a team of specialized industrial, academic and research partners will look into solving these challenges. BioRECO2VER wants to demonstrate the feasibility of more efficient biotechnological processes for the capture and conversion of CO2 from industrial point sources into the valuable platform chemicals isobutene and lactate.

To do so, the BioRECO2VER team will investigate among others a hybrid enzymatic process for CO2 capture from industrial point sources. The conversion of captured CO2 into the target products isobutene and lactate will be realized through 3 proprietary microbial platforms which are representative of a much wider range of products and applications. Bioprocess development and optimization will occur with both fermentative and bioelectrochemical systems. The microbial platforms will be advanced to Technology Readiness Level (TRL) 4 and the most promising process for each target product will be validated at TRL 5 on real off-gases.

International consortium combines industrial experience and academic expertise

The BioRECO2VER project was launched in January 1st and will run until the end of 2021 on a 7 mio EUR budget. The project will be coordinated by VITO (Flemish Institute for Technological Research). The other project partners are EnobraQ (France), Technical University of Luleå (Sweden), Syngip (Netherlands), IDENER (Optimización Orientada a la Sostenibilidad – Spain), CNR (Consiglio Nazionale delle Ricerche – Italy), Universitat de Girona (Spain), NOVA (Institut für politische und ökologische Innovation GmbH – Germany), Cementos Portland Valderrivas (Spain), Arkema (France), PKN ORLEN (Polski Koncern Naftowy ORLEN S.A. – Poland), and NatureWorks LLC (USA).

For more information click HERE